RANDOMIZED SKETCHES FOR KERNELS: FAST AND OPTIMAL NON-PARAMETRIC REGRESSION By

نویسندگان

  • Yun Yang
  • Mert Pilanci
  • Martin J. Wainwright
چکیده

Kernel ridge regression (KRR) is a standard method for performing non-parametric regression over reproducing kernel Hilbert spaces. Given n samples, the time and space complexity of computing the KRR estimate scale as O(n) and O(n) respectively, and so is prohibitive in many cases. We propose approximations of KRR based on m-dimensional randomized sketches of the kernel matrix, and study how small the projection dimension m can be chosen while still preserving minimax optimality of the approximate KRR estimate. For various classes of randomized sketches, including those based on Gaussian and randomized Hadamard matrices, we prove that it suffices to choose the sketch dimension m proportional to the statistical dimension (modulo logarithmic factors). Thus, we obtain fast and minimax optimal approximations to the KRR estimate for non-parametric regression. In doing so, we prove a novel lower bound on the minimax risk of kernel regression in terms of the localized Rademacher complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized sketches for kernels: Fast and optimal non-parametric regression

Kernel ridge regression (KRR) is a standard method for performing non-parametric regression over reproducing kernel Hilbert spaces. Given n samples, the time and space complexity of computing the KRR estimate scale as O(n3) and O(n2) respectively, and so is prohibitive in many cases. We propose approximations of KRR based on m-dimensional randomized sketches of the kernel matrix, and study how ...

متن کامل

Optimal DC Fast Charging Placing And Sizing In Iran Capital (Tehran)

DC fast charging (DCFC) and optimal placing of them is a fundamental factor for the popularization of electric vehicles (EVs). This paper proposes an approach to optimize place and size of charging stations based on genetic algorithm (GA). Target of this method is minimizing cost of conversion of gas stations to charging stations. Another considered issue is minimizing EVs losses to find neares...

متن کامل

Robust visual tracking via speedup multiple kernel ridge regression

Most of the tracking methods try to build up feature spaces to represent the appearance of the target. However, limited by the complex structure of the distribution of features, the feature spaces constructed in a linear manner cannot characterize the nonlinear structure well. We propose an appearance model based on kernel ridge regression for visual tracking. Dense sampling is fulfilled around...

متن کامل

A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees

We introduce a novel scheme for choosing the regularization parameter in high-dimensional linear regression with Lasso. This scheme, inspired by Lepski’s method for bandwidth selection in non-parametric regression, is equipped with both optimal finite-sample guarantees and a fast algorithm. In particular, for any design matrix such that the Lasso has low sup-norm error under an “oracle choice” ...

متن کامل

Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions

Embeddings of probability measures into reproducing kernel Hilbert spaces have been proposed as a straightforward and practical means of representing and comparing probabilities. In particular, the distance between embeddings (the maximum mean discrepancy, or MMD) has several key advantages over many classical metrics on distributions, namely easy computability, fast convergence and low bias of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016